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Abstract

The rate of evaporation from the wetted ¯oor of a tube open at the top to a relatively dry environment is
investigated analytically, numerically and experimentally for the case of a light vapour. Though buoyancy forces
ensure that the heavier external gas is always in motion, it is found that inside the tube both stagnation (di�usion-

dominated evaporation) and convection are possible. In contrast to previous studies, axisymmetry of the postcritical
¯ow is not assumed, leading to a reduction in the predicted critical Rayleigh number by a factor of 5 and much
better agreement with experiment. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that in closed containers heated

from below, unstable strati®cation with no ¯ow is

possible below a certain critical value of the vertical

density gradient [1]. If this value is exceeded, convec-

tive motion is initiated, leading to higher heat transfer

rates.

The common case of a container heated from below

with an open top is less clear, since some convective

motion always occurs (see Section 2.1). The relative

thermal conductivity of the container walls and the

size and shape of the surroundings both in¯uence the

¯ow pattern in the container and, hence, the heat

transfer rate. An example of this is the open thermosy-

phon, for which Weiss and Shai [2] have recently

shown that under certain conditions the cold ¯uid

from the ambient does not penetrate into the cylinder;

i.e. a closed convective cell is possible. This is in con-
trast with the earlier assumption [3,4] that the ¯uid

heated in the cylinder is discharged from the open end
and continuously replaced by cold ambient ¯uid.
In this paper, the onset of mass transfer-driven natu-

ral convection in an open cylinder partially ®lled with
water is studied using a combination of experiment,
analysis and numerical modelling. The cylinder is
placed at the base of a relatively large isothermal cube

so that the ambient conditions are determinate. The
positive buoyancy of the water vapour in air drives a
convective ¯ow in the cylinder and ambient which is

the subject of this investigation.
One application of this problem is to the estimation

of the error caused by evaporation in raingauges [5].

Since the walls of the cylinder are impermeable and
the mass fraction di�erences are small, this problem is
analogous to an open cylinder with perfectly adiabatic

walls that is heated from below.

1.1. Outline of the problem

Consider a solid cylindrical wall standing in the
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centre of the ¯oor of a cube ®lled with a nonreacting
gas (see Fig. 1). The ¯oor of the cylinder is a source of
vapour and the ¯oor of the cube is a sink. The other

surfaces are impermeable to the vapour. All surfaces
are impermeable to the gas and nonslip.
For example, the gas could be air, the walls glass or

acrylic, the bottom of the cylinder wet with water and

the rest of the base of the cube wet with a brine. The
vapour will be saturated over the cylinder base. By
varying the salt or its concentration, a wide range of

sink relative humidities is possible [6].
If the system is isothermal, the only causes of

motion are the interfacial velocity at the vapour source

and sink and buoyancy forces due to the dependence
of the mixture density on the vapour mass fraction. If,
then, the Boussinesq approximation is made, the con-
servation equations for the gas±vapour mixture are [7]:

r � u � 0 �1�

@u

@ t
� u � ru � ÿrp� Gr m Ãk� r2u �2�

@m

@ t
� u � rm � 1

Sc
r2m �3�

subject to

u � eF ÿ 1��eF ÿ 1�mÿ eF
�
Sc
rm, �4�

and

m1 � 1, m0 � 0 �5�

at the source and sink and

u � 0, �6�

Ãn � rm � 0 �7�

on the solid surfaces. The interfacial velocity boundary
condition (4) arises from the conservation of mass and

the impermeability of the surfaces to the gas Ð see
Rosenberger and MuÈ ller [8] or McBain [9] for a deri-
vation. In the air±water vapour example, it is a conse-

quence of the near insolubility of air in water.

1.2. Evaporation rate

By Eq. (4), the evaporation rate can be calculated
either from the interfacial velocity or from the gradient
of the mass fraction ®eld:

Nomenclature

DAB binary di�usivity
g gravitational acceleration
Gr Grashof number, gz�m�1 ÿm�0�R3

�=n2
H reduced cylinder height, H�=R�
Ãk unit vertical vector
L reduced enclosure size, L�=R�
M evaporation rate
m reduced vapour mass fraction, �m� ÿ

m�0�=�m�1 ÿm�0�
Ãn unit normal vector
Nu Nusselt number, thermal analogue of Sh
p reduced pressure, �p� � rgz��R2

�=rn2
Pr Prandtl number, thermal analogue of Sc

R cylinder radius or (Section 3.1) mass transfer
resistance

r reduced cylindrical radial coordinate, r�=R�
Ra Rayleigh number, or Gr Sc or Gr Pr
Sc Schmidt number, n=DAB

Sh Sherwood number, MH=rDABR�pF
T reduced cylinder wall thickness, T�=R�
t reduced time, t�n=R2

�
u reduced velocity, u�R�=n

w reduced vertical component of velocity, Ãk � u
z reduced vertical coordinate, z�=R�

Greek symbols
z vapour mass fraction coe�cient of volumetric

expansion

y longitude
n kinematic viscosity
x eigenvalue of Ostroumov's solution, Eq. (22)

r mixture density
F mass transfer rate factor, ln��1ÿm�0�=�1ÿ

m�1��

Subscripts
� dimensional
0 at the base of the cube

1 at the base of the cylinder
1D Stefan di�usion tube
c critical

cyl space inside cylinder
ext space outside cylinder
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M � rnR�
�1
0

�2p
0

rwjz�0 dy dr

� rnR�
1ÿ eF

Sc

�1
0

�2p
0

r
@m

@z
jz�0 dy dr: �8�

If m � 0 is applied at the cylinder mouth, the no-slip

condition (6) at the cylinder wall is neglected; and if
Gr � 0, the system reduces to a Stefan di�usion tube
[10]. Thus:

u1D � F
H Sc

Ãk, �9�

rp1D � 0, �10�

m1D � exp�F z=H� ÿ exp�F�
1ÿ exp�F� , �11�

from which the constant-density equivalent of Stefan's
Law is obtained:

M1D � rDABR�pF
H

: �12�

This is used as a reference evaporation rate to de®ne
the Sherwood number, Sh [11,12].

1.3. The low mass transfer rate limit

A rational approximation to the system at low mass
transfer rates is formally obtained by letting F tend to
zero and neglecting terms o(1). In this low mass trans-

fer rate limit, Eq. (4) is replaced by Eq. (6) and the
reduced evaporation rate is given by the limiting form
of Eq. (8):

Sh0ÿH
p

�1
0

�2p
0

r
@m

@z
jz�0 dy dr �F40�: �13�

This small F approximation is used hereafter.

Note that Eq. (13) is not quite the same as the
equation recommended in elementary mass transfer
textbooks [13]. The right-hand side is the same, and is

also formally identical to the usual expression for the
Nusselt number [13], but the left-hand side uses for the
driving force not a mass fraction di�erence, but F:
The present de®nition obviates the need for a `mass

transfer correction factor', such as used by Bird et al.
[14], Spalding [15] and Suehrcke and McBain [16],
when comparing results at high and low mass transfer

rates.
It is interesting to note that with the present de®-

nitions, the one-dimensional Stefan di�usion tube pro-

blem (Section 1.2) can be solved by neglecting the
interfacial velocity; the answer obtained, Sh � 1, will
be correct at all values of F:

2. General considerations

2.1. The parameter space

Apart from whatever initial conditions may be pre-

scribed, and using the small F approximation devel-
oped in Section 1.3, the problem depends on ®ve
dimensionless parameters: H, L, T, Sc and Gr. The

®rst four of these are necessarily nonnegative.
The Grashof number and the vapour mass fraction

coe�cient of volumetric expansion, z, have the same

sign: positive if admixture of the vapour decreases the
density of the mixture. Given the above mass transfer
boundary conditions, neither sign leads to a trivial

Fig. 1. Geometry: (a) plan and (b) elevation. The radial vector

is shown in (a) in the y � 0 position.
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problem; i.e. one with u � 0: This can be seen by tak-
ing the curl of the momentum equation (2) and setting

the velocity to zero:

0 � ÿGr Ãk� rm, �14�
so that Gr 6� 0 implies m � m�z�, only, which is im-

possible for solutions of Eqs. (3) and (5) in the present
geometry [17]. This is to be contrasted with the situ-
ation for in®nite horizontal layers [18] or closed cylin-

ders [19,20], where there exist hydrostatic solutions for
all Gr.
If the cylinder is tall enough, the presence of the

solid walls may be su�cient to damp out any internal

motion. This is suggested by the numerical solutions of
Goldstein and Lau [21] (cited in Section 2.2) or con-
sideration of the H41 limit [22,23]. For Gr > 0, the

¯uid is then unstably strati®ed. It is these con®gur-
ations, allowing the possibility of either stagnation or
convective instability in the cylinder, that are of great-

est interest in the present study.
Since the most common gas±vapour pair is air±

water vapour, and this has z > 0, we consider only
positive Grashof numbers and take Sc � 0:614: At

temperatures below 508C, water vapour makes up less
than 10% of air by mass, so that F < 10ÿ1 and the ap-
proximation for small F, developed in Section 1.3, is

useful. The values involved in the present experiments
are an order of magnitude smaller still (see Section
4.2).

The cube is only introduced to render the problem
determinate; the focus is the behaviour in the cylinder.
Values of L large enough for it to have no e�ect on Sh

are of particular interest, since then, presumably, the
cube could be replaced by any other shaped boundary
lying outside it. This is not to say that the ¯uid far
from the cylinder is quiescent (see the photographs

cited in Section 2.2), only that its motion has a negli-
gible in¯uence on the evaporation rate. The cylinder
wall thickness, T, is usually small (<<1).

2.2. Regimes

The photographs made by Torrance et al. [24] of the
¯ow in the thermal analogue of the special case H � 0,
localized heating of a disk in the centre of the ¯oor of
an enclosure, show that for Gr < 104 (at T � 0:7,
Sc � 0:7, F � 0 and L, based on height for noncubical
enclosures, of 15.2), the ¯ow is essentially axisymmetric
except near the enclosure walls. The basic structure is

a central plume through a horizontal vortex ring.
Comparable images of isolated plates have been
recorded [25].

A similar structure occurs in Goldstein and Lau's
[21] two-dimensional numerical solutions. They also
investigated the e�ect of vertical walls around the

plate (®nite H ), including experiments on open

square cylinders. These measurements showed that

for small Gr increasing H signi®cantly reduced the

mass transfer rates, as the walls block the ¯ow to

the plate, although the e�ect is reduced at higher

Gr. Their numerical solution at Sc � 0:7, H � 2 and

Gr � 1:1� 103 (the length scale being the plate area

to perimeter ratio) shows stagnant ¯uid and di�u-

sion-dominated transfer in the walled space, indicat-

ing unstable strati®cation. It might be suggested

that the lack of spatial resolution and the restric-

tions placed on the ¯ow (steadiness, planarity and

possibly symmetry about the vertical midplane,

although the paper is unclear on the point) in their

numerical solutions prevented gravitational instabil-

ities and so were responsible for the lack of agree-

ment with their experiments. The numerical

Sherwood numbers do not show the transition at

Gr1102 of their measurements. It is known [23]

that for very tall rectangles of unstably strati®ed

¯uid, the most easily excited plane disturbances

(excluding the even more likely three-dimensional

modes [26]) are antisymmetric. The symmetry at the

onset of convective evaporation in a circular cylin-

der will be shown in Section 4 to have a clear par-

allel with this problem.

At higher Rayleigh numbers (105±108, for 3:5 <
Pr < 1650� small walls �H � 0:18� around a heated cir-

cular plate actually increase the heat transfer rate,

while taller walls �H > 0:8� seem to have little e�ect

[27]. This latter ®nding is consistent with the trend for

enclosures heated from below: at high enough, Ra, Nu

becomes independent of the aspect ratio [28,29].

For very large H, the di�erence between open

and closed cylinders diminishes. This means the

asymptotic results of Ostroumov [22], Yih [23] and

Verhoeven [30] become available. In particular, it is

known that for Gr < 67:8H Scÿ1, the ¯uid is stable

with respect to all disturbances, and for higher Gr,

the initial growth of small disturbances is mono-

tonic in time, rather than oscillatory, and that the

symmetry of the preferred mode is diametral anti-

symmetry rather than axisymmetry.

As indicated in Section 2.1, the principal question

addressed in this study is the e�ect of Gr and H on Sh,

for Sc � 0:614, large L and small T and F: In particu-

lar, whether the cylinder walls can render the internal

¯uid stagnant, and, if so, under what conditions gravi-

tational instability can occur. In Section 3, the possi-

bility of stagnation is assumed, and the resulting

evaporation predicted. In Section 4, the experimental

method is described and evaporation measurements

reported for H � 4: The results, which indicate a con-

vective transition, are supported by full numerical sol-

utions of Eqs. (1)±(3). The critical density di�erence is
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estimated and the structure of the supercritical ¯ow
examined.

3. The stagnant cylinder

3.1. An approximate analytical treatment

For Gr � F � 0 and t41, the equations reduce to
u � rp � 0 and

r2m � 0, �15�
with Eqs. (5) and (7) as boundary conditions.

It is not possible to obtain an exact solution of Eq.
(15) in this geometry, but the mass transfer between
the ¯oor of the cylinder and the ¯oor of the cube can

be modelled as a path consisting of two serial resist-
ances, Rcyl and Rext.
Assuming one-dimensional di�usion in the cylinder,

its resistance is Rcyl � 1:
The external resistance is more complicated, but if

the cube walls are distant, the cylinder is tall and its
walls thin �L� H� 1� T), the mass transfer will re-

semble that between a point source at r � 0, z � H
and a zero wall at z � 0: This is identical to the mass
transfer between a point source at r � 0, z � H and a

point sink of equal strength at r � 0, z � ÿH: The sol-
ution for m in this simpli®ed problem is [31]:

m � Sh

4H

n�
r2 � �zÿH�2

�ÿ1=2ÿ�r2 � �z�H�2
�ÿ1=2o

: �16�

To construct an appropriate resistance for the exterior,
a mass fraction di�erence is required (m is singular at
the point source). To this end, the mean value of m is
taken over the disk where the mouth of the cylinder

would be,

�m � 1

p

�1
0

2pr mjz�H dr

� Sh

2H

h
1� 2Hÿ

ÿ
1� 4H 2

�1=2i
: �17�

The external resistance is Rext � �m=Sh, so that the

evaporation rate is

Sh � 1

Rcyl � Rext

� 2H

1� 4Hÿ �1� 4H 2 �1=2 : �18�

For the large values of H consistent with the deri-
vation, this is approximately

H

1

2
�H

: �19�

3.2. Veri®cation

To test Eq. (19), numerical solutions of Eq. (15)
were generated with the ¯uid dynamics analysis pack-
age FIDAP [32]. So as to reduce the dimensionality of

the problem, the cubical enclosure was replaced with a
coaxial cylinder of height and diameter L. For values
of L large enough not to a�ect Sh, the enclosure shape
should be irrelevant. The results of a series of runs

showing the diminishing e�ect of increasing enclosure
size are plotted in Fig. 2. The e�ect of cylinder aspect
ratio, H, is given in Fig. 3, where L � 10H is used to

give `large' enclosure results. Eqs. (18) and (19) are
seen to perform well at the higher values of H, as
expected, but the ®t can be much improved by adjust-

ing the constant in Eq. (19) to give:

Sh � H

0:594�H
�Gr � 0�: �20�

This semiempirical formula ®ts the FIDAP data of Fig.
3 to better than 0.3% for H > 1: A comparison with

experimental and numerical results at H � 4 is given in
Section 4.

4. Convective evaporation

There have been a number of studies on evaporation

from open cylindrical containers under isothermal con-

Fig. 2. The diminishing e�ect of enclosure size on evaporation

rate. FIDAP solutions for T � 0:05 and Gr � 0, for enclosures

of circular platform; height and diameter equal to L. Legend:

w H � 8; q H � 4; r H � 2:
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ditions [33±38]. The numerical study of Sparrow et al.
[33] considered 2RHR10 for Gr � 103 and 104,

whereas that of Nunez and Sparrow [35] covered
0:7RHR6 for Gr � 1917: Sparrow and Nunez [36]
presented measurements for 0:4RHR5:7 with Gr �
1708 and 2000. Suehrcke and Harris [37] presented nu-
merical and experimental data for H � 3:5 over the
range 1000RGrR30,000: They demonstrated that var-

ious axisymmetric steady-state ¯ow modes were poss-
ible and that the ¯ow was convectively stable (with
respect to axisymmetric disturbances) for GrR3000:
Without exception, the numerical simulations

reported in these studies assumed that the ¯ow is axi-
symmetric and so precluded the possibility of other
modes, such as the diametrally antisymmetric mode

mentioned in Section 2.2. In this section, a combi-
nation of experimental measurements and three-dimen-
sional numerical simulations are used to demonstrate

that for isothermal evaporation at H � 4, the most un-
stable ¯ow mode is diametral antisymmetry.

4.1. Predicting the onset of convection

The onset of convection in closed vertical cylinders

can be predicted by linear stability analysis [19,20,39].
This is much more di�cult for the open case, however,
since (a) there is no truly stagnant state and (b) the

boundary conditions at the mouth cannot be simply

speci®ed. Nevertheless, an approximate answer can be
obtained by neglecting (a) and treating (b) by imposing

at the mouth a stress-free condition on the velocity and
on the mass fraction the approximate pure-di�usion
value, m � H=�0:594�H �, obtained in Section 3. By

symmetry, then, this would give the same critical verti-
cal density gradient for an open cylinder of height H as
for a closed cylinder of height 2H. The criterion for

closed cylinders is given as a critical value of �Ra H ÿ1),
which is a weak function of H for large H [30].
Thus, the critical Grashof number for convective

instability is predicted to be

Grc1
0:594�H

Sc

ÿ
RacH

ÿ1�j�2H�: �21�

Applying Eq. (21) to the experimental arrangement

�Sc � 0:614, H � 4�, and obtaining �Rac H
ÿ1� by inter-

polating Verhoeven's table [30], gives Grc1550: This
®gure and the preceding analysis are tentative; a

description of experiments and numerical solutions
performed to determine the criterion more accurately
follows.

4.2. Experiments

The experimental apparatus was essentially the same

as that used in the earlier study [37]. Water was
pumped from a variable thermostatic bath through
copper pipes embedded in each of the polystyrene-clad

20 mm thick aluminium sides of the cube �L� �
44122 mm; uncertainties are quoted at a 95% con®-
dence level throughout). The cylinder �R� � 17:45 mm,

with standard deviation 0.07 mm, T � 0:11320:004,
total depth 72:9920:02 mm) holding 2:020:1 ml of
distilled water had polycarbonate walls and a 5.7 mm
thick aluminium base in direct contact with the ¯oor

of the cube and ®tted with a platinum resistance tem-
perature detector (PRTD). The remainder of the cube
¯oor was bonded to the underside of a 3 mm thick

perspex tray holding a saturated aqueous solution of
sodium chloride. A combined hygrometer±PRTD was
placed along one of the vertical edges and a third

PRTD taped to one of the cube walls. All PRTDs
were calibrated to 0.05 K. A pulley near the centre of
one of the upper edges held a string which led outside
the cube, enabling removal of the rubber lid of the

cylinder an hour or so after installation and assembly
of the cube and cylinder. This allowed control of the
initial conditions, though the transient response was of

no concern in the present study.
The measured quantities were: the dimensions and

mass of the dry cylinder; the duration of each run; the

mass of the cylinder before and after the run (from
which both M and H� were determined); and the three
PRTD temperatures. The relative humidity of the cube

Fig. 3. Purely di�usive evaporation from an open cylinder in

a large enclosure. Legend: ± � ± � ± Eq. (18); - - - Eq. (19);

ÐÐÐ Eq. (20); w FIDAP results (axisymmetric, cylindrical

enclosure of height and diameter 10H, T � 0:05).
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air was also measured, but only to assess the steadiness
of the system; m�1 and m�0 were calculated from the
temperature readings and tabulated data for the

vapour pressure over pure and salt water [40]. The
reduced results are presented in Table 1 and Fig. 4.
The principal di�culties in the experiments were the

geometry change from the fall in the level of the eva-
porating water, the change in the humidity over the
brine due to dilution by condensate and the evapora-
tive cooling of the source.

The accuracy of the scales (1 mg) allowed runs of
relatively short duration (less than a day); the greatest

evaporative mass loss in any run was 442 mg, equival-
ent to a 0.6% increase in H. For all runs,

H � 4:0920:03:
The problem of variation in m�0 due to conden-

sation in the brine was very small because of the low

transfer rates, the large area of the sink and especially
the shallowness of the brine layer. The tray was cov-
ered with excess solid salt, above which the maximum

Fig. 4. Evaporation from an open cylinder into a heavy gas

�H � 4, L � 25:1, T � 0:086, Sc � 0:614 and F small).

Legend: * experimental (present study); r experimental

([36], Figs. 3 and 4); ±q ± numerical (present study); - - - dif-

fusion limit, Eq. (20); � axisymmetric numerical result ([33],

Fig. 2).

Fig. 5. A typical solution for convective evaporation from an

open cylinder. H � 4, L � 25:1, T � 0:086, Sc � 0:614,
Gr � 1300: (a) m, with contours at 0.025 (0.05) 0.975 and (b)

u, with the maximum plotted vector having magnitude 21.24.

The section shown, y � p=2, 3p=2, is a plane of symmetry.

Table 1

Reduced experimental results, including 95% con®dence inter-

vals

F� 103 Gr Sh

4.920.2 610230 0.8720.06

11.820.9 1190290 2.3620.18

7.220.4 820240 1.5220.08

3.720.3 490230 0.9020.06

5.720.3 686230 1.0720.06

5.020.2 624230 1.0220.05

9.120.7 980270 1.9520.14
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liquid depth was about 2 mm. Assuming the solution
to be saturated at the interface with the excess solid,

the increase in the surface relative humidity should not
have exceeded 0.02%, in spite of the low di�usivity of
salt in water. It is estimated that the relative humidity

at the sink was maintained to better than20.01.
The evaporation at the water surface is accompanied

by a removal of heat of vaporization. This leads to a

temperature depression, which is o�set primarily by
conduction through the water from the aluminium
base. Ignoring the other compensatory e�ects, such as

radiation, conduction from the cylinder walls and con-
vective heat transfer from the air, the steady-state tem-
perature depression can be conservatively estimated.
This value (less than 0.1 K in all cases), the precision

of the PRTDs and the spread in the three temperature
measurements (up to 0.2 K) was used in estimating
the uncertainty of the source temperature. Another

problem with the evaporative cooling is that it produces
a buoyancy e�ect counteracting the primary compo-
sitional one. Using the above estimate of the surface

temperature depression, this was less than 4.4% in all
cases, and so within in the con®dence intervals quoted
for Gr. Like the previous two errors, this one is sys-

tematic in that it increases with the evaporation rate.
This is evident in the relative sizes of the error bars in
Fig. 4. Achieving accurate results at higher Sherwood
numbers would almost certainly require active control

of the temperature, i.e. automatic heating of the cylin-
der base [37].

4.3. Numerical solutions

The convective ¯ow in the cylinder and cube shown
in Fig. 1 was simulated using FIDAP [32]. This code
solves general ¯ow problems using the ®nite element

method. The performance of FIDAP has been evaluated
for various classical ¯ows by Sohn [41] and examples
of the application of FIDAP to natural convection mass

transfer problems can be found in Refs.
[7,37,38,42,43].
The steady-state form of the governing equations

(1)±(3), subject to boundary conditions (5)±(7), were
discretized and solved by the pressure projection segre-
gated algorithm [44], the consistent ®nite element
counterpart of the popular SIMPLER scheme [45] used

in ®nite volume codes. Preconditioned conjugate re-
sidual and conjugate gradient squared iterative solvers
were used for the solution of the symmetric and non-

symmetric matrices, respectively, as recommended by
Haroutunian et al. [44]. A sample solution is illustrated
by a section through a plane of symmetry in Fig. 5.

The nonuniform three-dimensional ®nite element
mesh was constructed of 27-node brick elements
employing quadratic shape functions and a linear dis-

continuous pressure approximation. The 70,741 nodes
and 10,596 elements were distributed so that they were

concentrated near nonslip surfaces and inside the cylin-
der. The central region above the mouth of the cylin-
der contains some high aspect ratio elements; however,

since the elements are aligned in the direction of ¯ow
and essentially no streamwise velocity gradient is
expected in a buoyant plume [46] (see also Fig. 5),

there should be little or no adverse e�ect on the sol-
ution. Simulations with this mesh typically required 40
iterations to reach the speci®ed relative error tolerance

of 10ÿ3, taking approximately 6 h of CPU time on a
single SGI R10000 processor.
A solution for Gr � 1000 was obtained in the fol-

lowing manner. A stagnant ¯ow ®eld was used as the

initial guess with the gravity vector tilted slightly to in-
itiate a preferred ¯ow direction. After a certain number
of iterations the gravity vector was realigned with the

z-axis and the solution allowed to reach steady-state. It
was found that more than one steady-state solution
was possible, depending on the initial gravity orien-

tation. If g was initially tilted in a plane parallel to
either faces �y � 0� or diagonals �y � p=4� of the cube,
the resulting steady-state solutions were observed to be

symmetric about the same plane. In either case, and
also when g was initially tilted in the y � p=8 plane,
the ¯ow ®eld in the cylinder and the resulting evapor-
ation rates were identical to four signi®cant ®gures.

These three cases are illustrated in Fig. 6, which shows

Fig. 6. Contours of w for convective evaporation from an

open cylinder in the plane z � 2: Numerical results (par-

ameters as in Fig. 7) obtained from an initial guess in which g

was tilted in the meridian plane: (a) y � 0, (b) y � p=8 and (c)

y � p=4: Compare (d) Ostroumov's asymptotic �H41� sol-
ution, Eq. (22).
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contours of w at the mid-height of the cylinder. The
patterns are identical apart from the orientation, and

are similar to the one-dimensional tall cylinder solution
of Ostroumov [22],

wA
�
J1�xr�
J1�x� ÿ

I1�xr�
I1�x�

�
cos y, x4 � 67:8 �22�

(the datum for y being arbitrary) which is also exhib-

ited in Fig. 6 for comparison.
The solution for the case where the symmetry

plane is parallel to the cube faces was used as a
starting point for solutions at higher and lower

Grashof numbers. A ramping procedure was used in

which the Grashof number was changed in a series

of steps (typically 50 and 100) and the solution at

the nearest Grashof number used as an initial

guess. In all cases, the symmetry plane remained

aligned with the cube faces. Subsequent results per-

tain to this series of runs.

Measured and predicted evaporation rates are com-

pared in Fig. 4. The agreement is excellent over the

range of Gr tested. Both sets of results tend to the dif-

fusion limit �Sh � 0:871� given by Eq. (20). These ex-

perimental data are not consistent with the

axisymmetric model of the cylinder [33,37] which does

not predict convective instability until Gr13000 [37].

Fig. 7. Velocity (a±c) and mass fraction (d±f) solutions for evaporation from an open cylinder. H � 4, L � 25:1, T � 0:086,
Sc � 0:614 and Gr � 350 (a, d), 450 (b,e) and 1300 (c, f). The longest arrows plotted are (a) 0.3196, (b) 0.4323 and (c) 15.08. The

contours (d±f) are at m � 0:05 (0.1) 0.95.
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Fig. 4 includes a point from this restricted model [33]
which is clearly at odds with both the physical evi-

dence and three-dimensional solutions.
The velocity and mass fraction ®elds in the y � 0, p

plane for three Grashof numbers are shown in Fig. 7.

For clarity, the velocity ®eld is only plotted inside the
cylinder, whereas the mass fraction contours extend
into the exterior. These ®gures illustrate the pro-

gression from the essentially stagnant cylinder
�GrR350, note that as stated in Section 2.1, there is a
nonzero ¯ow ®eld for any ®nite value of Gr ) to con-

vective ¯ow �Gr � 450±1300). This mode only strictly
exhibits the diametral antisymmetry of Eq. (22) in the
linear limit; Fig. 7(b) is close to this, but the pattern
becomes skewed by the increasing inertial forces at

higher Grashof numbers as is evident in Fig. 7(c).
With any numerical model, it is important to assess

the in¯uence of mesh re®nement and convergence tol-

erance [47]. Mesh re®nement tests at Gr � 103 indi-
cated that the predicted evaporation rate changed by
only 0.25 and 0.023% when the number of elements

was increased from 3684 to 10,596, and from 10,596 to
21,948, respectively. Additionally, the computed evap-
oration rate typically changed by less than 0.05%

when the relative convergence tolerance was decreased
from 10ÿ3 to 10ÿ4.

4.4. Discussion

The discrepancy evident in Fig. 4 between the axi-
symmetric and three-dimensional models is very similar
to the asymptotic �H41� ®ndings of Yih [23]: axi-

symmetric instability does not occur until
Grr452H=Sc whereas the corresponding value for dia-
metrally antisymmetric modes is Grr67:8H=Sc: Note
that the ®gures 452 and 67.8 are in the same ratio as

3000 [37] and 450 (Fig. 7(b)).
Some simple smoke visualization tests were per-

formed in an apparatus similar to the one described

above but transparent. While it has not yet been poss-
ible to obtain publication quality images, the ¯ow pat-
terns were clearly visible to the naked eye and

consistent with the three-dimensional numerical sol-
utions.
The symmetry of the supercritical ¯ow in the analo-

gous thermal problem [3,4] may be di�erent. Heat can

be conducted to the ¯uid from all along the cylinder,
favouring an axisymmetric ¯ow up near the walls and
down the axis. This axisymmetry has recently been ex-

perimentally demonstrated [2]. In closed cylinders with
conducting walls, for which thermal contact with the
cooled ceiling increases the (negative) vertical tempera-

ture gradient at the boundary, diametral antisymmetry
is again the preferred mode for large H [48], as has
been veri®ed for H � 6 [49].

5. Conclusion

While the velocity ®eld cannot completely vanish in

an open cylinder, the ¯uid inside can be rendered prac-
tically stagnant. Gravitational instability is also poss-
ible. This has been demonstrated for H � 4; however,

unlike in the case of closed cylinders, there is not a
precise critical Rayleigh number, but rather a range
over which the new ¯ow mode emerges. For H � 4

and Sc � 0:614, this is seen to be 350 < Gr < 450,
with the Sherwood number beginning to depart from
the di�usion level at about Gr � 600:
The onset of convection is not necessarily axisym-

metric. An incorrect assumption restricting the sym-
metry of the ¯ow can result in a large overestimate of
the critical vertical density gradient. For the present

geometry, convection occurred at a Grashof number
®ve times lower than predicted by previous axisym-
metric analyses. Such an error leads to a gross under-

estimation of the evaporation rate for intermediate
values of Gr.
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